-
1
-
Welcome Message
FREE PREVIEW
-
Why should one study Machine Learning?
-
Before we begin... Let us commit our learning goal
-
What topics will be covered in this course?
-
Books for developing multidimensional Machine Learning Skills.
-
My Reading List
-
2
-
Algorithmic vs Machine Learning Approach
-
When to use Machine Learning based approach
-
Types of Machine Learning
-
Data Analysis and Data Visualization (Data Types)
-
Undersatnding data through descriptive statistics
-
Data Visualization
-
Bias and Variance Tradeoff
-
3
-
Linear Regression : Introduction 7 Key Points to remember
-
Linear Regression-II : Statistical Background
-
Estimating Parameters for Simple Linear Regression through Ordinary Least Square (OLS) method
-
Evaluating Simple Linear Regression Model
-
SLR using Gradient Descent Algorithm
-
Multiple Linear Regression-I
-
Multiple Linear Regression-OLS Example
-
Multiple Linear Regression-Gradient Descent Algorithm
-
Linear Regression :Assumptions
-
Data Preprocessing: Feature Scaling
-
Data Pre-Processing: Handling Categorical Data
-
4
-
Classification Introduction
-
Conditional Mean and Sigmoid Function
-
Estimating Parameters: Logistic Regression
-
Logistic Regresssion Gradient Descent Algorithm
-
Logistic Regression: Evaluating Model
-
Linear Discriminant Analysis
-
Multivariate LDA and Quadratic Discriminant Analysis
-
K-Nearest Neighbour and Naive Baye's Classifiers.
-
5
-
Model Selection : Introduction
-
Ridge and Lasso Regression
-
Principal Component Analysis or Dimension Reduction
-
6
-
Exploratory Data Analysis -I
-
Exploratory Data Analysis Part-II Querying a Data Frame
-
Exploratory Data Analysis Part-III (Data Visualization)
-
7
-
Simple Linear Regression : Lab Activity
-
Simple Linear Regression using Gradient Descent and Scikit-Learn
-
Implementing Multiple Linear Regression using Matrix operation, OLS and Gradient Descent
-
Data Pre-Processing Lab
-
Logistic Regression Lab
-
Linear Discriminant Analysis Lab
-
PCA Lab 1
-
PCA Lab 2